کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10332257 687203 2005 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
2-local 4/3-competitive algorithm for multicoloring hexagonal graphs
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
2-local 4/3-competitive algorithm for multicoloring hexagonal graphs
چکیده انگلیسی
An important optimization problem in the design of cellular networks is to assign sets of frequencies to transmitters to avoid unacceptable interference. A cellular network is generally modeled as a subgraph of the infinite triangular lattice. Frequency assignment problem can be abstracted as a multicoloring problem on a weighted hexagonal graph, where the weights represent the number of calls to be assigned at vertices. In this paper we present a distributed algorithm for multicoloring hexagonal graphs using only the local clique numbers ω1(v) and ω2(v) at each vertex v of the given hexagonal graph, which can be computed from local information available at the vertex. We prove the algorithm uses no more than ⌈4ω(G)/3⌉ colors for any hexagonal graph G, without explicitly computing the global clique number ω(G). We also prove that our algorithm is 2-local, i.e., the computation at a vertex v∈G uses only information about the demands of vertices whose graph distance from v is less than or equal to 2.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algorithms - Volume 55, Issue 1, April 2005, Pages 29-41
نویسندگان
, ,