کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1057780 947089 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Production of lightweight aggregates from mining and industrial wastes
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
Production of lightweight aggregates from mining and industrial wastes
چکیده انگلیسی

Washing aggregate sludge from a gravel pit, sewage sludge from a wastewater treatment plant (WWTP) and a clay-rich sediment have been physically, chemically and mineralogically characterized. They were mixed, milled and formed into pellets, pre-heated for 5 min and sintered in a rotary kiln at 1150 °C, 1175 °C, 1200 °C and 1225 °C for 10 and 15 min at each temperature. The effects of the raw material characteristics, heating temperatures and dwell times on the loss on ignition (LOI), bloating index (BI), bulk density (ρb), apparent and dry particle densities (ρa, ρd), voids (H), water absorption (WA24h) and compressive strength (S) were determined. All the mixtures presented a bloating potential taking into consideration the gases released at high temperatures. The products obtained were lightweight aggregates (LWAs) in accordance with Standard UNE-EN-13055-1 (ρb ≤ 1.20 g/cm3 or particle density ≤ 2.00 g/cm3). LWAs manufactured with 50% washing aggregate sludge and 50% clay-rich sediment were expanded LWAs (BI > 0) and showed the lowest apparent particle density, the lowest water absorption and the highest compressive strength. It was possible to establish three groups of LWAs on the basis of their properties in comparison to Arlita G3, F3 and F5, commercially available lightweight aggregates manufactured in Spain. Our LWAs may have the same or similar applications as these commercial products, such as horticulture, prefabricated lightweight structures and building structures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Environmental Management - Volume 90, Issue 8, June 2009, Pages 2801–2812
نویسندگان
, , ,