کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10677655 | 1012361 | 2015 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
FCM based hybrid evolutionary computation approach for optimization power consumption by varying cars in EGCS
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Elevators are the essential transportation tools in high buildings so that elevator group control system (EGCS) is developed to dynamically layout the schedule of elevators in a group. In this study, a fuzzy cognitive map (FCM) based computation approach by using particle swarm optimization (PSO) has been applied for estimating the minimum required elevators in EGCS so as to minimize the electricity consumption with predefined service quality. In literature, most of the studies were mostly focused on the scheduling strategy in order to have more efficient elevator dispatching or energy saving. However, the minimum numbers of elevators should be activated to sustain the required service quality. In other words, the maximum average waiting time for customers should be less than the predefined length of time while the minimum numbers of elevators are working in EGCS. The experimental results show that the performance of the proposed FCM based approach is feasible to estimate the required power consumption and average waiting time so as to decide the optimal numbers of elevators in EGCS.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 39, Issue 19, 1 October 2015, Pages 5917-5924
Journal: Applied Mathematical Modelling - Volume 39, Issue 19, 1 October 2015, Pages 5917-5924
نویسندگان
Ta-Cheng Chen, An-Chen Lee, Shih-Lun Huang,