کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10751716 1050319 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation
چکیده انگلیسی
We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm2 fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C-C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochemical and Biophysical Research Communications - Volume 464, Issue 1, 14 August 2015, Pages 20-26
نویسندگان
, , , , , , , , ,