کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10751863 | 1050319 | 2015 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Changes in secondary structure of α-synuclein during oligomerization induced by reactive aldehydes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
زیست شیمی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The oxidative stress-related reactive aldehydes 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) have been shown to promote formation of α-synuclein oligomers in vitro. However, the changes in secondary structure of α-synuclein and the kinetics of the oligomerization process are not known and were the focus of this study. Size exclusion chromatography showed that after 1 h of incubation, HNE induced the formation of an oligomeric α-synuclein peak with a molecular weight of about â¼2000 kDa, which coincided with a decreasing â¼50 kDa monomeric peak. With prolonged incubation (up to 24 h) the oligomeric peak became the dominating molecular species. In contrast, in the presence of ONE, a â¼2000 oligomeric peak was exclusively observed after 15 min of incubation and this peak remained constant with prolonged incubation. Western blot analysis of HNE-induced α-synuclein oligomers showed the presence of monomers (15 kDa), SDS-resistant low molecular (30-160 kDa) and high molecular weight oligomers (â¥260 kDa), indicating that the oligomers consisted of both covalent and non-covalent protein. In contrast, ONE-induced α-synuclein oligomers only migrated as covalent cross-linked high molecular-weight material (â¥300 kDa). Both circular dichroism (CD) and Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy showed that the formation of HNE- and ONE-induced oligomers coincided with a spectral change from random coil to β-sheet. However, ONE-induced α-synuclein oligomers exhibited a slightly higher degree of β-sheet. Taken together, our results indicate that both HNE and ONE induce a change from random coil to β-sheet structure that coincides with the formation of α-synuclein oligomers; albeit through different kinetic pathways depending on the degree of cross-linking.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochemical and Biophysical Research Communications - Volume 464, Issue 1, 14 August 2015, Pages 336-341
Journal: Biochemical and Biophysical Research Communications - Volume 464, Issue 1, 14 August 2015, Pages 336-341
نویسندگان
Yixiao Cai, Christofer Lendel, Lars Ãsterlund, Alex Kasrayan, Lars Lannfelt, Martin Ingelsson, Fredrik Nikolajeff, Mikael Karlsson, Joakim Bergström,