کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1165421 1491067 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of supervised Self Organising Maps parameters on classification performance
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Effects of supervised Self Organising Maps parameters on classification performance
چکیده انگلیسی

Self Organising Maps (SOMs) are one of the most powerful learning strategies among neural networks algorithms. SOMs have several adaptable parameters and the selection of appropriate network architectures is required in order to make accurate predictions. The major disadvantage of SOMs is probably due to the network optimisation, since this procedure can be often time-expensive.Effects of network size, training epochs and learning rate on the classification performance of SOMs are known, whereas the effect of other parameters (type of SOMs, weights initialisation, training algorithm, topology and boundary conditions) are not so obvious.This study was addressed to analyse the effect of SOMs parameters on the network classification performance, as well as on their computational times, taking into consideration a significant number of real datasets, in order to achieve a comprehensive statistical comparison. Parameters were contemporaneously evaluated by means of an approach based on the design of experiments, which enabled the investigation of their interaction effects.Results highlighted the most important parameters which influence the classification performance and enabled the identification of the optimal settings, as well as the optimal architectures to reduce the computational time of SOMs.

Figure optionsDownload as PowerPoint slideHighlights
► We evaluated effects of SOMs parameters on classification and computational time.
► The study was conducted on eighteen real datasets.
► Significant parameters and their interactions on classification were highlighted.
► Optimal architectures to reduce the computational time of SOMs was proposed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytica Chimica Acta - Volume 765, 26 February 2013, Pages 45–53
نویسندگان
, , ,