کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1165567 | 1491106 | 2012 | 6 صفحه PDF | دانلود رایگان |

Mucin-16 (MUC16) is the established ovarian cancer marker used to follow the disease during or after treatment for epithelial ovarian cancer. The emerging science of cancer markers also demands for the new sensitive detection methods. In this work, we have developed an electrochemical immunosensor for antigen MUC16 using gold nanoelectrode ensemble (GNEE) and ferrocene carboxylic acid encapsulated liposomes tethered with monoclonal anti-Mucin-16 antibodies (αMUC16). GNEEs were fabricated by electroless deposition of the gold within the pores of polycarbonate track-etched membranes. Afterwards, αMUC16 were immobilized on preformed self-assembled monolayer of cysteamine on the GNEE via cross-linking with EDC-Sulfo-NHS. A sandwich immunoassay was performed on αMUC16 functionalized GNEE with MUC16 and immunoliposomes. The differential pulse voltammetry was employed to quantify the faradic redox response of ferrocene carboxylic acid released from immunoliposomes. The dose–response curve for MUC16 concentration was found between the range of 0.001–300 U mL−1. The lowest detection limit was found to be 5 × 10−4 U mL−1 (S/N = 3). We evaluated the performance of this developed immunosensor with commercial ELISA assay by comparing results obtained from spiked serum samples and real blood serum samples from volunteers.
Figure optionsDownload as PowerPoint slideHighlights
► PEGylated liposome biolabel was used for signal amplification.
► GNEE is an efficient support for antibody and electrochemical transduction.
► LOD was found 5 × 10−4 U mL−1 of MUC16 in blood serum.
► This MUC16 immunosensor is a better alternative to ELISA in clinical analysis.
Journal: Analytica Chimica Acta - Volume 726, 13 May 2012, Pages 79–84