کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1165925 | 1491093 | 2012 | 10 صفحه PDF | دانلود رایگان |

The automated fragmentation analysis of high resolution EI mass spectra based on a fragmentation tree algorithm is introduced. Fragmentation trees are constructed from EI spectra by automated signal extraction and evaluation. These trees explain relevant fragmentation reactions and assign molecular formulas to fragments. The method enables the identification of the molecular ion and the molecular formula of a metabolite if the molecular ion is present in the spectrum. These identifications are independent of existing library knowledge and, thus, support assignment and structural elucidation of unknown compounds. The method works even if the molecular ion is of very low abundance or hidden under contaminants with higher masses. We apply the algorithm to a selection of 50 derivatized and underivatized metabolites and demonstrate that in 78% of cases the molecular ion can be correctly assigned. The automatically constructed fragmentation trees correspond very well to published mechanisms and allow the assignment of specific relevant fragments and fragmentation pathways even in the most complex EI-spectra in our dataset. This method will be very helpful in the automated analysis of metabolites that are not included in common libraries and it thus has the potential to support the explorative character of metabolomics studies.
Figure optionsDownload as PowerPoint slideHighlights
► We present a method for de novo analysis of accurate mass EI mass spectra of small molecules.
► This method identifies the molecular ion and thus the molecular formula where the molecular ion is present in the spectrum.
► Fragmentation trees are constructed by automated signal extraction and evaluation.
► These trees explain relevant fragmentation reactions.
► This method will be very helpful in the automated analysis of unknown metabolites.
Journal: Analytica Chimica Acta - Volume 739, 20 August 2012, Pages 67–76