کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1170181 960669 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantitative predictions of gas chromatography retention indexes with support vector machines, radial basis neural networks and multiple linear regression
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Quantitative predictions of gas chromatography retention indexes with support vector machines, radial basis neural networks and multiple linear regression
چکیده انگلیسی

Support vector machines (SVM), radial basis function neural networks (RBFNN) and multiple linear regression (MLR) methods were used to investigate the correlation between GC retention indexes (RI) and physicochemical descriptors for both 174 and 132 diverse organic compounds. The correlation coefficient r2 between experimental and predicted retention index for training and test sets by SVM, RBFNN and MLR is 0.986, 0.976 and 0.971 (for 174 compounds), 0.986, 0.951 and 0.963 (for 132 compounds) respectively. The results show that non-linear SVM derives statistical models have similar prediction ability to those of RBFNN and MLR methods. This indicates that SVM can be used as an alternative modeling tool for quantitative structure–property/activity relationship (QSPR/QSAR) studies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytica Chimica Acta - Volume 609, Issue 1, 18 February 2008, Pages 24–36
نویسندگان
,