کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1170277 | 960673 | 2007 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Combined wavelet transform-artificial neural network use in tablet active content determination by near-infrared spectroscopy
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The pharmaceutical industry faces increasing regulatory pressure to optimize quality control. Content uniformity is a basic release test for solid dosage forms. To accelerate test throughput and comply with the Food and Drug Administration's process analytical technology initiative, attention is increasingly turning to nondestructive spectroscopic techniques, notably near-infrared (NIR) spectroscopy (NIRS). However, validation of NIRS using requisite linearity and standard error of prediction (SEP) criteria remains a challenge. This study applied wavelet transformation of the NIR spectra of a commercial tablet to build a model using conventional partial least squares (PLS) regression and an artificial neural network (ANN). Wavelet coefficients in the PLS and ANN models reduced SEP by up to 60% compared to PLS models using mathematical spectra pretreatment. ANN modeling yielded high-linearity calibration and a correlation coefficient exceeding 0.996.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytica Chimica Acta - Volume 591, Issue 2, 22 May 2007, Pages 219-224
Journal: Analytica Chimica Acta - Volume 591, Issue 2, 22 May 2007, Pages 219-224
نویسندگان
Pascal Chalus, Serge Walter, Michel Ulmschneider,