کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1179241 | 1491527 | 2016 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Prediction of 13C NMR chemical shifts by artificial neural network. I. Partial charge model as atomic descriptor
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Mulliken population analysis (MPA), Hirshfeld population analysis (HPA), Charge Model 5 (CM5) and Hu Lu Yang charge fitting method (HLY) were considered in order to reveal influence of atomic partial charges on the 13C NMR chemical shifts. The test set included seven classes of organic molecules. Partial charges of carbon atoms were obtained from quantum-chemical calculations at DFT/HISS level. Linear regressions were constructed as estimators of accuracy of each model. The best approach was shown by multivariate regression with MPA, HPA, and CM5 charges as predictors in a linear model with mean value of R2Â =Â 0.8917.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 152, 15 March 2016, Pages 62-68
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 152, 15 March 2016, Pages 62-68
نویسندگان
Ilya I. Kiryanov, Farit H. Mukminov, Arthur R. Tulyabaev, Leonard M. Khalilov,