کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1180218 1491571 2006 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Support vector regression applied to materials optimization of sialon ceramics
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Support vector regression applied to materials optimization of sialon ceramics
چکیده انگلیسی

Partial Least Squares (PLS) and Back Propagation Artificial Neural Network (BP-ANN) are widely known machine learning techniques for materials optimization, whereas Support Vector Machine (SVM) is seldom used in materials science. In this paper, Support Vector Regression (SVR), a machine learning technology based on statistical learning theory (SLT), was applied to predict the cold modulus of sialon ceramic with satisfactory results. In a benchmark test, the performances of SVR were compared with those of PLS and BP-ANN. The prediction accuracies of the different models were discussed on the basis of the leave-one-out cross-validation. The results showed that the prediction accuracy of SVR model was higher than those of BP-ANN and PLS models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 82, Issues 1–2, 26 May 2006, Pages 8–14
نویسندگان
, , , , ,