کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1181173 | 962914 | 2009 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Classification study of novel piperazines as antagonists for the melanocortin-4 receptor based on least-squares support vector machines
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The least-squares support vector machine (LS-SVM), as an effective machine learning algorithm, was used to develop a nonlinear binary classification model of novel piperazines-bis- piperazines as antagonists for the melanocortin-4 (MC4) receptor based on their activity. Each compound was represented by calculated structural descriptors that encode constitutional, topological, geometrical, electrostatic, quantum-chemical features. Five descriptors selected by forward stepwise linear discriminant analysis (LDA) were used as inputs of the LS-SVM model. The nonlinear model developed from LS-SVM algorithm (with prediction accuracy of 95% on the test set) outperformed LDA (test accuracy of 90%). The proposed method is very useful for chemists to screen antagonists for the MC4 receptor.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 96, Issue 2, 15 April 2009, Pages 144-148
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 96, Issue 2, 15 April 2009, Pages 144-148
نویسندگان
Yongna Yuan, Ruisheng Zhang, Liangying Luo,