کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1181176 962914 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Testing effects of experimental design factors using multi-way analysis
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Testing effects of experimental design factors using multi-way analysis
چکیده انگلیسی

Analysing experimental design data is usually performed by analysis of variance (ANOVA). In situations where the higher orders of interactions hold the most relevant information, generalised multiplicative analysis of variance (GEMANOVA), which is based on parallel factor analysis (PARAFAC), may be a useful supplement to ANOVA. By GEMANOVA the information in the data is compressed down to a few multiplicative components describing the main variation in the data including relevant interaction phenomena. GEMANOVA is best used as an explorative tool. Still there is a need for validation criteria to assist the model building. In the present publication we present such a validation criterion for GEMANOVA models based on bootstrap methodology. The method is demonstrated on a data set consisting of a pot experiment, measuring the nitrogen-to-sulfur ratio in wheat grown under different fertilising schemes. It was found that GEMANOVA revealed complex patterns in the data which were unobservable by ANOVA.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 96, Issue 2, 15 April 2009, Pages 172–181
نویسندگان
, ,