کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1181422 962935 2010 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
How to simulate normal data sets with the desired correlation structure
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
How to simulate normal data sets with the desired correlation structure
چکیده انگلیسی

The Cholesky decomposition is a widely used method to draw samples from multivariate normal distribution with non-singular covariance matrices. In this work we introduce a simple method by using singular value decomposition (SVD) to simulate multivariate normal data even if the covariance matrix is singular, which is often the case in chemometric problems. The covariance matrix can be specified by the user or can be generated by specifying a subset of the eigenvalues. The latter can be an advantage for simulating data sets with a particular latent structure. This can be useful for testing the performance of chemometric methods with data sets matching the theoretical conditions for their applicability; checking their robustness when the hypothesized properties fail; or generating data from multi-stage or multi-phase processes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 101, Issue 1, 15 March 2010, Pages 38–42
نویسندگان
, ,