کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1181715 | 962980 | 2007 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Automatic design of growing radial basis function neural networks based on neighboorhood concepts
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Despite the reputation of RBFNs (Radial Basis Function Neural Networks), RBFN design is not straightforward since the efficiency of the model depends on many parameters. RBFNs often require many manual parameter adjustments, which is a serious weakness especially when they have to be used automatically. In this paper, a method to design RBFNs for classification problems is proposed, with a view to obtaining classification models rapidly by minimizing manual parameters, with performances very close to the best attainable from numerous trials. The RBFN can be initiated automatically via the use of advanced clustering algorithms adapted to supervised contexts to find preliminary cells. The final architecture is obtained via a growing process controlled by different mechanisms in order to find small and reliable RBF classifiers. A candidate pattern is selected for creating a new unit only if it produces a significant quadratic error while presenting a significant classification potential from its neighborhood properties. The efficiency of the method is demonstrated on artificial and real data sets from the field of chemometrics.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 87, Issue 2, 15 June 2007, Pages 231-240
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 87, Issue 2, 15 June 2007, Pages 231-240
نویسندگان
Frédéric Ros, Marco Pintore, Jacques R. Chrétien,