کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1199045 1493498 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparing two metabolic profiling approaches (liquid chromatography and gas chromatography coupled to mass spectrometry) for extra-virgin olive oil phenolic compounds analysis: A botanical classification perspective
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Comparing two metabolic profiling approaches (liquid chromatography and gas chromatography coupled to mass spectrometry) for extra-virgin olive oil phenolic compounds analysis: A botanical classification perspective
چکیده انگلیسی


• Olive oil phenolic compounds profiling using LC–ESI–TOF MS and GC–APCI–TOF MS.
• PCA facilitated visualisation of natural clustering of studied oils.
• Reliable PLS-DA models for varietal discrimination of studied oils were established.
• Potential varietal markers were identified.

Over the last decades, the phenolic compounds from virgin olive oil (VOO) have become the subject of intensive research because of their biological activities and their influence on some of the most relevant attributes of this interesting matrix. Developing metabolic profiling approaches to determine them in monovarietal virgin olive oils could help to gain a deeper insight into olive oil phenolic compounds composition as well as to promote their use for botanical origin tracing purposes. To this end, two approaches were comparatively investigated (LC–ESI–TOF MS and GC–APCI–TOF MS) to evaluate their capacity to properly classify 25 olive oil samples belonging to five different varieties (Arbequina, Cornicabra, Hojiblanca, Frantoio and Picual), using the entire chromatographic phenolic profiles combined to chemometrics (principal component analysis (PCA) and partial least square-discriminant analysis (PLS–DA)). The application of PCA to LC–MS and GC–MS data showed the natural clustering of the samples, seeing that 2 varieties were dominating the models (Arbequina and Frantoio), suppressing any possible discrimination among the other cultivars. Afterwards, PLS–DA was used to build four different efficient predictive models for varietal classification of the samples under study. The varietal markers pointed out by each platform were compared. In general, with the exception of one GC–MS model, all exhibited proper quality parameters. The models constructed by using the LC–MS data demonstrated superior classification ability.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Chromatography A - Volume 1428, 8 January 2016, Pages 267–279
نویسندگان
, , , , , , , ,