کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1240416 | 969120 | 2009 | 10 صفحه PDF | دانلود رایگان |

Quantitative analysis with laser-induced breakdown spectroscopy traditionally employs calibration curves that are complicated by chemical matrix effects. These chemical matrix effects influence the laser-induced breakdown spectroscopy plasma and the ratio of elemental composition to elemental emission line intensity. Consequently, laser-induced breakdown spectroscopy calibration typically requires a priori knowledge of the unknown, in order for a series of calibration standards similar to the unknown to be employed. In this paper, three new Multivariate Analysis techniques are employed to analyze the laser-induced breakdown spectroscopy spectra of 18 disparate igneous and highly-metamorphosed rock samples. Partial Least Squares analysis is used to generate a calibration model from which unknown samples can be analyzed. Principal Components Analysis and Soft Independent Modeling of Class Analogy are employed to generate a model and predict the rock type of the samples. These Multivariate Analysis techniques appear to exploit the matrix effects associated with the chemistries of these 18 samples.
Journal: Spectrochimica Acta Part B: Atomic Spectroscopy - Volume 64, Issue 1, January 2009, Pages 79–88