کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1244263 | 969683 | 2007 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Artificial neural network-based transformation for nonlinear partial least-square regression with application to QSAR studies
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In the present study a new version of nonlinear partial least-square method based on artificial neural network transformation (ANN-NLPLS) has been proposed. This algorithm firstly transforms the training descriptors into the hidden layer outputs using the universal nonlinear mapping carried by an artificial neural network, and then utilizes PLS to relate the outputs of the hidden layer to the bioactivities. The weights between the input and hidden layers are optimized by a particle swarm optimization (PSO) method using the criterion of minimized model error via PLS modeling. An F-statistic is introduced to determine automatically the number of PLS components during the weight optimization. The performance is assessed using a simulated data set and two quantitative structure-activity relation (QSAR) data sets. Results of these three data sets demonstrate that ANN-NLPLS offers enhanced capacity in modeling nonlinearity while circumventing the overfitting frequently involved in nonlinear modeling.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Talanta - Volume 71, Issue 2, 15 February 2007, Pages 848-853
Journal: Talanta - Volume 71, Issue 2, 15 February 2007, Pages 848-853
نویسندگان
Yan-Ping Zhou, Jian-Hui Jiang, Wei-Qi Lin, Lu Xu, Hai-Long Wu, Guo-Li Shen, Ru-Qin Yu,