کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1244752 969699 2007 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Size exclusion chromatography with dual-beam refractive index gradient detection of polystyrene samples
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Size exclusion chromatography with dual-beam refractive index gradient detection of polystyrene samples
چکیده انگلیسی

Non-aqueous size exclusion chromatography (SEC) of polystyrenes (as model analytes) is examined using the microscale molar mass sensor (μ-MMS) for detection. The μ-MMS is combined with SEC to demonstrate this simultaneously universal and molar mass selective detection method for polymer characterization. The μ-MMS is based on measuring the refractive index gradient (RIG) at two positions (upstream and downstream) within a T-shaped microfluidic channel. The RIG is produced from a sample stream (eluting analytes in the mobile phase) merging with a mobile phase stream (mobile phase only). The magnitude of the RIG is measured as a probe beam deflection angle and is related to analyte diffusion coefficient, the time allowed for analyte diffusion from the sample stream toward the mobile phase stream, and the bulk phase analyte refractive index difference relative to the mobile phase. Thus, two deflection angles are measured simultaneously, the upstream angle and the downstream angle. An angle ratio is calculated by dividing the downstream angle by the upstream angle. The μ-MMS was found to extend the useful molar mass calibration range of the SEC system (nominally limited by the total exclusion and total permeation regions from ∼100,000 g/mol to ∼800 g/mol), to a range of 3,114,000–162 g/mol. The injected concentration LOD (based on 3 s statistics) was 2 ppm for the upstream detection position. The point-by-point time-dependent ratio, termed a ‘ratiogram’, is demonstrated for resolved and overlapped peaks. Within detector band broadening produces some anomalies in the ratiogram shapes, but with highly overlapped distributions of peaks this problem is diminished. Ratiogram plots are converted to molar mass as a function of time, demonstrating the utility of SEC/μ-MMS to examine a complex polymer mixture.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Talanta - Volume 73, Issue 2, 15 September 2007, Pages 287–295
نویسندگان
, , , ,