کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1245180 969714 2007 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification
چکیده انگلیسی

In the analysis of gene expression profiles, the number of tissue samples with genes expression levels available is usually small compared with the number of genes. This can lead either to possible overfitting or even to a complete failure in analysis of microarray data. The selection of genes that are really indicative of the tissue classification concerned is becoming one of the key steps in microarray studies. In the present paper, we have combined the modified discrete particle swarm optimization (PSO) and support vector machines (SVM) for tumor classification. The modified discrete PSO is applied to select genes, while SVM is used as the classifier or the evaluator. The proposed approach is used to the microarray data of 22 normal and 40 colon tumor tissues and showed good prediction performance. It has been demonstrated that the modified PSO is a useful tool for gene selection and mining high dimension data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Talanta - Volume 71, Issue 4, 15 March 2007, Pages 1679–1683
نویسندگان
, , , ,