کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1270013 1497467 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hydrogen adsorption on palladium anchored defected graphene with B-doping: A theoretical study
ترجمه فارسی عنوان
جذب هیدروژن بر روی گرافن نقره ای با پالادیوم متصل به دوپینگ: یک مطالعه نظری
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
چکیده انگلیسی


• There was an increase for the activity of the DG by introducing B-dopant.
• The adsorption of H2 on Pd/DVG leaded to dissociated and chemisorbed state.
• The activated states of H2 occurred on SVG with stretched H–H bonds.

The effect of a combination of B-doping and vacancy-defect on the atomic adsorption of hydrogen on Pd-decorated graphene have been investigated using density functional theory simulations. The introducing of defect and B-dopant enhanced the adsorption of hydrogen molecule and the PDOS results indicated that the enhancement was contributed by the hybridization of B and H atoms. Furthermore, the adsorption of hydrogen molecule on Pd-decorated double-vacancy (DV) defective graphene lead to dissociated and chemisorbed states with the two separated H atoms bonding to the C atoms at vacancy sites. Interestingly, the B-doping decreased the interaction between the Pd-adatom and the defected graphene but increased the stability of the adsorption of dissociated H2. The activated states of H2 molecule occurred in the adsorption on single-vacancy (SV) defected graphene with stretched H–H bonds. Our results provide a potential approach for the engineering of graphene for hydrogen storage applications.

The adsorption of hydrogen on Pd-decorated modified graphene, considering various adsorption structures, were studied by performing the atomic structures, geometry parameters, and electronic properties to explore the effect of a combination of B-dopant and defect on the H2 adsorption.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 40, Issue 6, 19 February 2015, Pages 2473–2483
نویسندگان
, , , , , , ,