کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1272087 1497581 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Thermodynamic analysis of solar energy use for reforming fuels to hydrogen
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Thermodynamic analysis of solar energy use for reforming fuels to hydrogen
چکیده انگلیسی

In this paper, a method is proposed for reforming fuels to hydrogen using solar energy at distributed locations (industrial sites, residential and commercial buildings fed with natural gas, remote settlements supplied by propane etc). In order to harness solar energy a solar concentrator is used to generate high temperature heat to reform fuels to hydrogen. A typical fuel such as natural gas, propane, methanol, or an atypical fuel such as ammonia or urea can be transported to distributed locations via gas networks or other means. The thermodynamic analysis of the process shows the general reformation reactions for NH3, CH4 and C3H8 as the input fuel by comparison through operational fuel cost and CO2 mitigation indices. Through a cost analysis, cost reduction indices show fuel-usage cost reductions of 10.5%, 22.1%, and 22.2% respectively for the reformation of ammonia, methane, and propane. CO2 mitigation indices show fuel-usage CO2 mitigations of 22.1% and 22.3% for methane and propane respectively, where ammonia reformation eliminates CO2 emission at the fuel-usage stage. The option of reforming ammonia is examined in further detail as proposed cycles for solar energy capture are considered. A mismatch of specific heats from the solar dish is observed between incoming and outgoing streams, allowing a power production system to be included for a more complete energy capture. Further investigation revealed the most advantageous system with a direct expansion turbine being considered rather than an external power cycle such as Brayton or Rankine type cycles. Also, an energy efficiency of approximately 93% is achievable within the reformation cycle.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 36, Issue 12, June 2011, Pages 7002–7011
نویسندگان
, , ,