کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1293949 973584 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modelling of tubular-designed solid oxide fuel cell with indirect internal reforming operation fed by different primary fuels
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Modelling of tubular-designed solid oxide fuel cell with indirect internal reforming operation fed by different primary fuels
چکیده انگلیسی

Mathematical models of an indirect internal reforming solid oxide fuel cell (IIR-SOFC) fed by four different primary fuels, i.e., methane, biogas, methanol and ethanol, are developed based on steady-state, heterogeneous, two-dimensional and tubular-design SOFC models. The effect of fuel type on the thermal coupling between internal endothermic reforming with exothermic electrochemical reactions and system performance are determined. The simulation reveals that an IIR-SOFC fuelled by methanol provides the smoothest temperature gradient with high electrochemical efficiency. Furthermore, the content of CO2 in biogas plays an important role on system performance since electrical efficiency is improved by the removal of some CO2 from biogas but a larger temperature gradient is expected.Sensitivity analysis of three parameters, namely, a operating pressure, inlet steam to carbon (S:C) ratio and flow direction is then performed. By increasing the operating pressure up to 10 bar, the system efficiency increases and the temperature gradient can be minimized. The use of a high inlet S:C ratio reduces the cooling spot at the entrance of reformer channel but the electrical efficiency is considerably decreased. An IIR-SOFC with a counter-flow pattern (as based case) is compared with that with co-flow pattern (co-flow of air and fuel streams through fuel cell). The IIR-SOFC with co-flow pattern provides higher voltage and a smoother temperature gradient along the system due to superior matching between heat supplied from electrochemical reaction and heat required for steam reforming reaction; thus it is expected to be a better option for practical applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Power Sources - Volume 195, Issue 1, 1 January 2010, Pages 69–78
نویسندگان
, , , ,