کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1317311 | 1499447 | 2014 | 12 صفحه PDF | دانلود رایگان |

The coordination modes and geometry assumed in solution by the potent antitumor oxidovanadium(IV) complexes formed by different flavonoids were studied by spectroscopic (Electron Paramagnetic Resonance, EPR) and computational (Density Functional Theory, DFT) methods. A series of bidentate flavonoid ligands (L) with increasing structural complexity was examined, which can involve (CO, O−) donors and formation of five- and six-membered chelate rings, or (O−, O−) donors and five-membered chelate rings. The geometry corresponding to these coordination modes can be penta-coordinated, [VOL2], or cis-octahedral, cis-[VOL2(H2O)]. The results show that, at physiological pH, ligands provided with (CO, O−) donor set yield cis-octahedral species with “maltol-like” coordination when five-membered chelate rings are formed (as with 3-hydroxyflavone), while penta-coordinated structures with “acetylacetone-like” coordination are preferred when the chelate rings are six-membered (as with chrysin). When both the binding modes are possible, as with morin, the “acetylacetone-like” coordination is observed. For the ligands containing a catecholic donor set, such as 7,8-dihydroxyflavone, baicalein, fisetin, quercetin and rutin, the formation of square pyramidal complexes with (O−, O−) “catechol-like” coordination and five-membered chelate rings is preferred at physiological pH. The determination of the different coordination modes and geometry is important to define the biotransformation in the blood and the interaction of these complexes with the biological membranes.
The coordination modes and geometry at physiological pH and the possible biotransformation in the blood of the potential antitumor VIVO complexes of flavonoids are discussed.Figure optionsDownload as PowerPoint slide
Journal: Journal of Inorganic Biochemistry - Volume 140, November 2014, Pages 173–184