کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1330982 | 978986 | 2009 | 6 صفحه PDF | دانلود رایگان |

Titanate nanotube bundles assembled by several simple nanotubes were synthesized through a simple reaction between TiO2 crystallites and highly concentrated NaOH in the presence of Au or Pd sols. Due to the unique scrolling growth mechanism of titanate nanotubes (TNTs), Au or Pd clusters were encapsulated in situ by TNTs, and titanate/Au and titanate/Pd nanotube bundles were formed. In comparison with carbon nanotubes (CNTs) or active carbon that was widely used as carriers to support metal clusters, TNTs bundles can immobilize the metal clusters tightly and overcome the shortcoming of exfoliation of metal clusters from the carriers. The as-prepared titanate/metal hybrids possess mesoporosity and high surface area. The electrochemical oxidation of methanol demonstrates that titanate/Pd hybrids exhibit high electrocatalytic activity and excellent stability, and hence they should be ideal catalyst candidates in direct methanol fuel cells (DMFCs).
Titanate/Au and titanate/Pd nanotube bundles have been fabricated by taking advantage of the unique scrolling growth mechanism of titanate tubes. The titanate/Pd hybrids show stable catalytic effects toward the electrooxidation of methanol.Figure optionsDownload as PowerPoint slide
Journal: Journal of Solid State Chemistry - Volume 182, Issue 10, October 2009, Pages 2912–2917