کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1333785 | 979106 | 2007 | 9 صفحه PDF | دانلود رایگان |

The hydrothermal synthesis of magnesium–gallium layered double hydroxides (Mg/Ga LDHs) was studied under static and agitated conditions. Not only well-crystallized and large-sized Mg/Ga LDHs having hexagonal morphology were obtained but also the reaction time was comparatively decreased from 24 to 2 h by means of agitation during hydrothermal synthesis. In static conditions, mainly GaOOH and magnesite phases were formed. The elemental analysis results show that the final Mg/Ga ratio is significantly different from the initial ratio. The reason was attributed to the difference in the hydrolytic behavior of Mg2+ and Ga3+. Furthermore, the anion exchange studies with glycine, dodecyl sulfate, ferrocyanide and ferricyanide were performed to investigate the intercalation behavior of the anions into Mg/Ga LDHs. In addition, delamination of Mg/Ga LDHs was performed in formamide for the glycine exchanged forms. Large size of nanosheets thus obtained can be utilized in the fabrication of functional thin films.
Hydrothermal synthesis under agitation resulted in highly crystalline Mg/Ga LDHs slabs in a short time. The LDHs slabs were delaminated into two-dimensional nanosize sheets.Figure optionsDownload as PowerPoint slide
Journal: Journal of Solid State Chemistry - Volume 180, Issue 9, September 2007, Pages 2525–2533