کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1357094 981199 2006 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
2D Autocorrelation modeling of the negative inotropic activity of calcium entry blockers using Bayesian-regularized genetic neural networks
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
2D Autocorrelation modeling of the negative inotropic activity of calcium entry blockers using Bayesian-regularized genetic neural networks
چکیده انگلیسی

Negative inotropic potency of 60 benzothiazepine-like calcium entry blockers (CEBs), Diltiazem analogs, was successfully modeled using Bayesian-regularized genetic neural networks (BRGNNs) and 2D autocorrelation vectors. This approach yielded reliable and robust models whilst by means of a linear genetic algorithm (GA) search routine no multilinear regression model was found describing more than 50% of the training set. On the contrary, the optimum neural network predictor with five inputs described about 84% and 65% variances of 50 randomly selected training and test sets. Autocorrelation vectors in the nonlinear model contained information regarding 2D spatial distributions on the CEB structure of van der Waals volumes, electronegativities, and polarizabilities. However, a sensitivity analysis of the network inputs pointed out to the electronegativity and polarizability 2D topological distributions at substructural fragments of sizes 3 and 4 as the most relevant features governing the nonlinear modeling of the negative inotropic potency.

Basic structures of the 60 Diltiazem-like calcium entry blockers used for modeling negative inotropic activity.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bioorganic & Medicinal Chemistry - Volume 14, Issue 10, 15 May 2006, Pages 3330–3340
نویسندگان
, , ,