کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1358062 | 981317 | 2014 | 8 صفحه PDF | دانلود رایگان |

The incidence of cancer grows annually worldwide and in Brazil it is the second cause of death. The search for anti-cancer drugs has then become urgent. It depends on the studies of natural and chemical synthesis products. The antitumor action of LQB-118, a pterocarpanquinone structurally related to lapachol, has been demonstrated to induce mechanisms linked to leukemia cell apoptosis. This work investigated some mechanisms of the in vitro antitumor action of LQB-118 on prostate cancer cells. LQB-118 reduced the expression of the c-Myc transcription factor, downregulated the cyclin D1 and cyclin B1 mRNA levels and upregulated the p21 cell cycle inhibitor. These effects resulted in cell cycle arrest in the S and G2/M phases and inhibition of tumor cell proliferation. LQB-118 also induced programmed cell death of the prostate cancer cells, as evidenced by internucleosomal DNA fragmentation and annexin-V positive cells. Except the cell cycle arrest in the S phase and enhanced c-Myc expression, all the mechanisms observed here for the in vitro antitumor action of LQB-118 were also found for Paclitaxel, a traditional antineoplastic drug. These findings suggest new molecular mechanisms for the LQB-118 in vitro antitumor action.
Figure optionsDownload as PowerPoint slide
Journal: Bioorganic & Medicinal Chemistry - Volume 22, Issue 12, 15 June 2014, Pages 3115–3122