کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1374944 | 981928 | 2006 | 5 صفحه PDF | دانلود رایگان |

Structural analysis of the essential binding elements of the oxindole-based kinase inhibitor (1) led to the identification of a novel class of heterocyclic-substituted pyrazolones. Knoevenagel condensation of a variety of activated methylene nucleophiles with indole or pyrrole carboxaldehydes provided a focused library of molecules, each containing elements of kinase pharmacophore probe. Initial screening for VEGFR-2 kinase inhibition eliminated several of the probes. Identification of an active pyrazolone motif and further optimization resulted in several highly potent VEGFR-2 inhibitors with cellular efficacy, anti-angiogenic activity ex vivo in rat aortic ring explant cultures, and oral anti-tumor efficacy in nude mice.
Structural analysis of the essential binding elements of the oxindole-based kinase inhibitor (1) led to the identification of a novel class of heterocyclic-substituted pyrazolones. Knoevenagel condensation of a variety of activated methylene nucleophiles with indole or pyrrole carboxaldehydes provided a focused library of molecules, each containing elements of kinase pharmacophore probe. Initial screening for VEGFR-2 kinase inhibition eliminated several of the probes. Identification of an active pyrazolone motif and further optimization resulted in several highly potent VEGFR-2 inhibitors with cellular efficacy, anti-angiogenic activity ex vivo in rat aortic ring explant cultures, and oral anti-tumor efficacy in nude miceFigure optionsDownload as PowerPoint slide
Journal: Bioorganic & Medicinal Chemistry Letters - Volume 16, Issue 8, 15 April 2006, Pages 2158–2162