کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1404948 | 1501731 | 2015 | 8 صفحه PDF | دانلود رایگان |

• Synthesis of new DNA targeting metal chelates.
• Square planar geometrical arrangements of the complexes.
• The newly synthesized metal chelates act as persistent intercalators.
• Metal chelates display better chemical nuclease activity.
• They exhibit excellent catalytic performance towards the oxidation of toluene.
A new tridentate ligand, (E)-(2-((2-hydroxybenzylidene)amino)phenyl)(phenyl)methanone and its four metal(II) chelates have been designed and synthesized. They were structurally characterized by elemental analysis, FT IR, UV–vis, 1H NMR, 13C NMR, mass spectra, EPR, magnetic moment and conductivity measurements. Elemental analysis and molar conductance values reveal that all the chelates are 1:1 stoichiometry of the type [MLCl] having non-electrolytic nature. The metal chelates adopt square planar geometrical arrangements around the metal ions. The DNA-binding properties of these chelates have been investigated by electronic absorption, cyclic voltammetry, differential pulse voltammogram and viscosity measurements. The data indicate that these complexes bind to DNA via an intercalation mode. The oxidative cleavage of the metal complexes with pBR322 DNA has also been investigated by gel electrophoresis. Moreover, the antimicrobial bustle shows that all metal chelates have superior activity than the free ligand. The oxidation of toluene to benzaldehyde is effectively catalyzed by the synthesized chelates.
Figure optionsDownload as PowerPoint slide
Journal: Journal of Molecular Structure - Volume 1086, 15 April 2015, Pages 56–63