کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1405402 1501733 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Structural, optical and magnetic properties of Zn1−xMnxAl2O4 (0 ⩽ x ⩽ 0.5) spinel nanostructures by one-pot microwave combustion technique
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Structural, optical and magnetic properties of Zn1−xMnxAl2O4 (0 ⩽ x ⩽ 0.5) spinel nanostructures by one-pot microwave combustion technique
چکیده انگلیسی


• One-pot microwave combustion synthesis of Mn2+ doped ZnAl2O4 spinel nanostructures.
• The XRD patterns and Rietveld analysis confirmed the formation of spinel ZnAl2O4.
• HR-SEM images show the formation of well defined nanocluster grains on the surface.
• The direct band gap decreased with increasing Mn2+ content from 5.05 to 3.49 eV.
• Magnetic measurements revealed Mn doped ZnAl2O4 has superparamagnetic behavior.

Zn1−xMnxAl2O4 (0 ⩽ x ⩽ 0.5) spinel nanostructures were synthesized by urea assisted microwave combustion method. Structural, vibrational, morphological, optical and magnetic properties were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), high resolution scanning electron microscopy (HR-SEM), UV–visible diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectroscopy, and vibrating sample magnetometry (VSM) respectively. The XRD studies showed that the samples have pure cubic spinel phase, which is further validated by Rietveld refinement. The average crystallite size is of the nanoparticles estimated using Debey–Scherrer’s method was found to be in the range of 14–17 nm. The lattice parameter is increased from 8.089 to 8.160 Å with increasing in Mn2+ content. The William–Hall (W–H) analysis was used to study the effects of lattice strain over the crystallite size. Increase in lattice parameter and increase in porosity were observed on increasing Mn2+ concentration FTIR spectra showed the vibrational stretching frequencies corresponding to the zinc aluminate spinels. The morphology of the samples depicted the formation of well developed nano-sized clusters with homogeneous well crystallized grains without any agglomerations. The optical band gap value of undoped zinc aluminate nanostructure is higher than the reported bulk zinc aluminate. The direct band gap estimated using Kubelka–Munk method decreased with increasing Mn2+ content (5.05–3.49 eV), due to the formation of sub bands in the energy gap. The photoluminescence characteristics of undoped and Mn2+ doped zinc aluminates are suggestive of defect controlled process and had an effect on the luminescence. Magnetic measurements revealed that the undoped ZnAl2O4 has diamagnetic behavior while the Mn2+ doped ZnAl2O4 system has superparamagnetic behavior.

HR-SEM image depict the formation of well developed nano-sized clusters with homogeneous well crystallized grains for Zn00.9Mn0.1Al2O4 spinel nanostructures synthesized by one-pot microwave combustion technique, and the corresponding crystal structure drawn by FullPROF studio 2.0 confirmed the spinel-type structure.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Molecular Structure - Volume 1084, 15 March 2015, Pages 244–253
نویسندگان
, , , ,