کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1421410 986409 2012 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد بیومتریال
پیش نمایش صفحه اول مقاله
Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles
چکیده انگلیسی

ObjectivesCalcium and phosphate ion-releasing resin composites are promising for remineralization. However, there has been no report on incorporating antibacterial agents to these composites. The objective of this study was to develop antibacterial and mechanically strong nanocomposites incorporating a quaternary ammonium dimethacrylate (QADM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP).MethodsThe QADM, bis(2-methacryloyloxyethyl) dimethylammonium bromide (ionic dimethacrylate-1), was synthesized from 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate. NAg was synthesized by dissolving Ag 2-ethylhexanoate salt in 2-(tert-butylamino)ethyl methacrylate. Mechanical properties were measured in three-point flexure with bars of 2 mm × 2 mm × 25 mm (n = 6). Composite disks (diameter = 9 mm, thickness = 2 mm) were inoculated with Streptococcus mutans. The metabolic activity and lactic acid production of biofilms were measured (n = 6). Two commercial composites were used as controls.ResultsFlexural strength and elastic modulus of NACP + QADM, NACP + NAg, and NACP + QADM + NAg matched those of commercial composites with no antibacterial property (p > 0.1). The NACP + QADM + NAg composite decreased the titer counts of adherent S. mutans biofilms by an order of magnitude, compared to the commercial composites (p < 0.05). The metabolic activity and lactic acid production of biofilms on NACP + QADM + NAg composite were much less than those on commercial composites (p < 0.05). Combining QADM and NAg rendered the nanocomposite more strongly antibacterial than either agent alone (p < 0.05).SignificanceQADM and NAg were incorporated into calcium phosphate composite for the first time. NACP + QADM + NAg was strongly antibacterial and greatly reduced the titer counts, metabolic activity, and acid production of S. mutans biofilms, while possessing mechanical properties similar to commercial composites. These nanocomposites are promising to have the double benefits of remineralization and antibacterial capabilities to inhibit dental caries.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Dental Materials - Volume 28, Issue 5, May 2012, Pages 561–572
نویسندگان
, , , , , , , ,