کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1424331 | 986717 | 2012 | 9 صفحه PDF | دانلود رایگان |

Rheumatoid arthritis is characterized by systemic inflammation of synovial joints leading to erosion and cartilage destruction. Although efficacious anti-tumor necrosis factor α (TNF-α) biologic therapies exist, there is an unmet medical need for safe and more efficient treatment regimens for disease remission. We evaluated the anti-inflammatory effects of poly(dl-lactide-co-glycolide acid) (PLGA) nanoparticles loaded with small interfering RNA (siRNA) directed against TNF-α in vitro and in vivo. The siRNA-loaded PLGA nanoparticles mediated a dose-dependent TNF-α silencing in lipopolysaccharide-activated RAW 264.7 cells in vitro. The severity of collagen antibody-induced arthritis in DBA/1J mice was assessed by paw scoring and compared to the degree of magnetic resonance imaging (MRI)-quantified joint effusion and bone marrow edema. Two intra-articular treatments per joint with nanoparticles loaded with TNF-α siRNA (1 μg) resulted in a reduction in disease activity, evident by a significant decrease of the paw scores and joint effusions, as compared to treatment with PLGA nanoparticles loaded with non-specific control siRNA, whereas the degree of bone marrow edema in the tibial and femoral head remained unchanged. When the siRNA dose was 5 or 10 μg, there was no difference between the specific and the non-specific siRNA treatment groups. These findings suggest that MRI is a promising method for evaluation of early disease progression and treatment in murine arthritis models. In addition, proper siRNA dosing seems to be important for a positive therapeutic outcome in vivo. However, further studies are needed to fully clarify the mechanism(s) underlying the observed anti-inflammatory effects of the siRNA-loaded nanoparticles.
Intra-articular treatment with TNF-α siRNA-loaded PLGA nanoparticles mediated a significant and specific reduction in visual paw scores and MRI-quantified joint effusion at 1 μg siRNA.Figure optionsDownload high-quality image (135 K)Download as PowerPoint slide
Journal: Journal of Controlled Release - Volume 161, Issue 3, 10 August 2012, Pages 772–780