کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1425047 986751 2011 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kinetics of transport of doxorubicin bound to nanoparticles across the blood–brain barrier
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد بیومتریال
پیش نمایش صفحه اول مقاله
Kinetics of transport of doxorubicin bound to nanoparticles across the blood–brain barrier
چکیده انگلیسی

Drug delivery to the brain is restricted due to the blood–brain barrier (BBB). Previously, it has been shown that surfactant-coated doxorubicin-loaded nanoparticles were successful in overcoming the BBB and were effective in the treatment of rat brain tumours. However, drug distribution in brain tissue after crossing the BBB was never determined. To distinguish between the amounts of drug in the whole brain and the fraction of drug in the brain parenchyma after crossing the BBB a capillary depletion technique was employed. For this purpose rats were intravenously treated with a doxorubicin solution in 1% polysorbate 80, or doxorubicin-loaded poly-(n-butyl cyanoacrylate) (PBCA) nanoparticles without and with 1% polysorbate 80 coating, respectively. The dosage of doxorubicin was 5 mg per kg of rat body weight. At 30 min, 2 h, and 4 h following intravenous injection into the tail vein, the rats were sacrificed and their brains removed. Homogenates of the brains were prepared. In addition, one part of the homogenate was separated by centrifugation into a pellet (vascular elements) and supernatant (parenchyma) using a well established capillary depletion technique. The time-dependent distribution of doxorubicin in these brain fractions was studied. Clinically effective concentrations in all investigated brain fractions could only be detected in rats treated with surfactant-coated nanoparticles, indicating a significant transcytosis across the BBB. Only low concentrations were observed after 0.5 and 2 h with the uncoated nanoparticles. No uptake of doxorubicin into the brain was observable after administration of drug solution alone. These observations demonstrate the great potential of surface-coated PBCA nanoparticles for the delivery of drugs to the central nervous system.

Doxorubicin concentration in different rat brain fractions 2 h after intravenous injection of 5 mg/kg doxorubicin solution, doxorubicin-loaded poly(butyl cyanoacrylate) (PBCA) nanoparticles (NP), or doxorubicin-loaded PBCA-NP coated with polysorbate 80 (PS80).Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Controlled Release - Volume 154, Issue 1, 25 August 2011, Pages 103–107
نویسندگان
, , , , ,