کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1426648 | 986821 | 2008 | 7 صفحه PDF | دانلود رایگان |

Interest in ultrasound contrast agents (lipid-shelled microbubbles) as delivery vehicles is increasing; however, the biodistribution of these agents remains uncharacterized, both with and without ultrasound. In this study, an 18F-labeled lipid ([18F]fluorodipalmitin), incorporated in microbubble shells, was used as a dynamic microPET probe for quantitative 90-minute biodistribution measurements in male Fischer 344 rats (n = 2). The spleen retained the highest concentration of radioactive lipid at ~ 2.6%-injected dose per cubic centimeter (% ID/cc) and the liver demonstrated the largest total accumulation (~ 17% ID). The microbubble pharmacokinetic profile differed from free lipid, which is rapidly cleared from blood, and liposomes, which remain in circulation. Additionally, region of interest (ROI) analysis over 60 minutes (post-ultrasound treatment) quantified the delivery of lipid by therapeutic ultrasound from microbubbles to kidney tissue (n = 8). The ultrasound sequence consisted of a 200 kPa, 5.3 MHz radiation force pulse followed by a 1.6 MPa, 1.4 MHz fragmentation pulse and was applied to one kidney, while the contralateral kidney served as a control. ROI-estimated activity in treated kidneys was slightly but significantly greater at 0 and 60 min than in untreated kidneys (p = 0.0012 and 0.0035, respectively). This effect increased with the number of microbubbles injected (p = 0.006). In summary, [18F]fluorodipalmitin was used to characterize the biodistribution of contrast microbubble shells and the deposition of lipid was shown to be locally increased after insonation.
Journal: Journal of Controlled Release - Volume 131, Issue 3, 12 November 2008, Pages 160–166