کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1445297 1509579 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting
چکیده انگلیسی

Electron beam melting (EBM®)-built Ti–6Al–4V has increasingly shown great potential for orthopedic implant and aerospace applications in recent years. The microstructure and mechanical properties of EBM-built Ti–6Al–4V have been systematically investigated in this work. Its microstructure consists of columnar prior β grains delineated by wavy grain boundary α and transformed α/β structures with both cellular colony and basket-weave morphology as well as numerous singular α bulges within the prior β grains. The β phase is found to form as discrete flat rods embedded in continuous α phase and its volume fraction is determined to be ∼3.6%. Moreover, α′ martensite was not observed as it has decomposed into α and β phases. In particular, the α/β interface was studied in detail combined transmission electron microscopy with atom probe tomography. Of note is that graded Ti–6Al–4V microstructure i.e. both prior β grain width and β phase interspacing continuously increase with the build height, was observed, which mainly arises from the decreasing cooling rate. Furthermore, an increasingly pronounced strain hardening effect was also observed as the previously built layers undergo a longer annealing compared to the subsequent layers. As a result, graded mechanical properties of Ti–6Al–4V with degraded microhardness and tensile properties were found. A good agreement with the Hall–Petch relation indicates that the graded property takes place mainly due to the graded microstructure. In addition, this graded microstructure and mechanical properties were discussed based on a quantitative characterization.

Figure optionsDownload high-quality image (190 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Materialia - Volume 97, 15 September 2015, Pages 1–16
نویسندگان
, , , , , , , ,