کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1445741 988586 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nanoconfinement significantly improves the thermodynamics and kinetics of co-infiltrated 2LiBH4–LiAlH4 composites: Stable reversibility of hydrogen absorption/resorption
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Nanoconfinement significantly improves the thermodynamics and kinetics of co-infiltrated 2LiBH4–LiAlH4 composites: Stable reversibility of hydrogen absorption/resorption
چکیده انگلیسی

A uniformly distributed composite of 2LiBH4–LiAlH4 was successfully nanoconfined in mesoporous carbon scaffolds by using the solvent-mediated infiltration technique. The onset dehydrogenation temperatures of LiAlH4 and LiBH4 in the infiltrated 2LiBH4–LiAlH4 composite are decreased to ∼80 and ∼230 °C, respectively, and are 40 and 145 °C lower for their post-milled counterparts. Isothermal measurements reveal that ∼10 wt.% H2 could be released from the nanoconfined 2LiBH4–LiAlH4 composite at 300 °C within 300 min, while less than 4 wt.% H2 was released with respect to the post-milled mixture, even at 350 °C. Moreover, by taking advantage of both nanoconfinement and thermodynamic destabilization, the release of toxic diborane from LiBH4 was successfully suppressed. The dehydrogenation mechanism reveals that, under the structure-directing effects of carbon supports, the decomposition of the well-distributed 2LiBH4–LiAlH4 composite favors the formation of AlB2 instead of the thermodynamically stable Li2B12H12, which has been verified to play a crucial role in enhancing the hydrogenation of the 2LiBH4–LiAlH4 composite. In combination with the extra LiH supplied by the in situ decomposition of nanoconfined LiAlH4, the thus-tailored thermodynamics and kinetics of the 2LiBH4–LiAlH4 composite endow it with significantly advanced reversible hydrogen storage properties, with a stable reversibility without apparent degradation after seven dehydrogenation/rehydrogenation cycles.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Materialia - Volume 61, Issue 18, October 2013, Pages 6882–6893
نویسندگان
, , , , , , ,