کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1446607 988616 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature
چکیده انگلیسی

Conductive metallic features that are flexible could have application in integrated circuits, ranging from large-area electronics to low-end applications. This paper shows the creation of conductive silver thin film and wire on the transparent flexible polyethylene terephthalate (PET) substrate by a room-temperature chemical reduction process. One-step synthesis and spectroscopic characterizations of size-controlled silver nanoparticles are also described. Transmission electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric-mass analysis, X-ray photoelectron spectroscopy and synchrotron radiation X-ray diffraction were used to characterize the dodecanoate-protected silver nanoparticles. Silver metal film and wire were produced by soaking the dodecanoate-protected silver nanoparticle film and wire, which were prepared, respectively, by spin-coating and by directly drawing with a commercial Epson T50 inkjet printer onto the flexible PET substrate using Ag nanoparticles suspended in cyclohexane (10 wt.%) as the ink, in an aqueous solution containing 80% N2H4. The resistivities of the Ag films are actually lower compared with the Ag thin films prepared by other conventional chemical routes, such as using silver salts as metallo-organic precursors. It is suggested that the use of nanoparticles as a precursor may be an explanation for the lower resistivity.

Silver features were produced by directly spin-coating or drawing with a commercial inkjet printer on the flexible PET substrate using Ag nanoparticles suspended in cyclohexane (10 wt.%) as the ink.Figure optionsDownload high-quality image (108 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Materialia - Volume 60, Issue 16, September 2012, Pages 5914–5924
نویسندگان
, , , , , , ,