کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1449865 | 988716 | 2007 | 12 صفحه PDF | دانلود رایگان |

An Al–7% Si alloy was severely deformed by equal channel angular pressing to study the refinement of the microstructure and associated changes of mechanical properties. The initial coarse dendritic structure was broken into an elongated submicron grain/subgrain structure, with a high dislocation density and distributed fine Si particles. The Si particles in the composite are seen to induce a high dislocation density during deformation and lead to faster structural refinement than in a monolithic alloy with the same composition as the matrix. The additional strengthening of the composite relative to the monolithic alloy is due to both the finer grain size and the high retained dislocation density. Severe plastic deformation also leads to an improvement in the ductility of the strong material due to the refinement of both the matrix microstructure and the Si particles.
Journal: Acta Materialia - Volume 55, Issue 4, February 2007, Pages 1319–1330