کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1450417 988733 2006 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modelling of recrystallisation textures in aluminium alloys: I. Model set-up and integration
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Modelling of recrystallisation textures in aluminium alloys: I. Model set-up and integration
چکیده انگلیسی

A modelling scheme is presented to predict recrystallisation textures of aluminium alloys. It is assumed that the formation of textures during recrystallisation is governed by both oriented nucleation and oriented growth. An essential step is the prediction of the nucleation textures. The approach presented is based on orientation-dependent statistical information on the deformation substructure, which is obtained from an interactive combination of the deformation texture model GIA (grain interaction) and the dislocation density-based work hardening model 3IVM (three internal variables model). Substructural quantities characteristic for each single grain in the simulation are the dislocation density, the probability of shear band formation, the strength of in-grain orientation gradients, and the number of active slip systems. The latter is connected to subgrain morphology to predict orientation-dependent recovery. The nucleation texture model ReNuc distinguishes three nucleation mechanisms: random nucleation at shear bands, grain boundary nucleation, and nucleation in transition bands. The relative contribution of the three nucleation mechanisms to the nucleation texture is predicted based on the frequency of their substructural features in the simulated deformed state. The simulated dislocation density of each deformed matrix grain is used as a driving force during the growth simulation with the statistical recrystallisation texture model StaRT. The model allows a quantitative prediction of recrystallisation texture for hot forming or annealing after cold forming.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Materialia - Volume 54, Issue 12, July 2006, Pages 3275–3289
نویسندگان
, , ,