کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
146464 456371 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dielectric barrier discharge plasma used as a means for the remediation of soils contaminated by non-aqueous phase liquids
ترجمه فارسی عنوان
پلاسمای تخلیه دیواره الکتریکی که به عنوان وسیله ای برای اصلاح خاک های آلوده به مایعات فاز غیر آبی استفاده می شود
کلمات کلیدی
اصلاح خاک، پلاسما غیر حرارتی، طیف سنجی انتشار نوری، فرایند اکسیداسیون پیشرفته، پروفیل مولکولی ارگانیک بالا
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی


• Soil remediation by DBD plasma resulted in the fast and complete removal of NAPL.
• The plasma species were identified and gas temperature was determined.
• High-throughput organic profiling analysis by GC–MS to identify the intermediates.
• Ketones and alcohols were identified as intermediate products of alkane oxidation.
• The energy consumed by DBD plasma is low and almost independent of soil thickness.

A plane-to-grid dielectric barrier discharge (DBD) reactor operating with air at atmospheric pressure was used to investigate the removal of non-aqueous phase liquids (NAPLs) from soil layers. A mixture of n-C10, n-C12 and n-C16 was used as a model NAPL that polluted the soil at a very high initial concentration (100,000 mg/kg-soil). The effect of treatment time, energy consumption, and soil thickness on the NAPL removal efficiency was investigated, the plasma active species were identified, and the macroscopic gas temperature was determined. The NAPL remediation efficiency found to be as high as 99.9% after 60–120 s of plasma treatment, depending on soil thickness. The energy density required to remediate completely the NAPL was about 600 J/g-soil and was practically independent of the soil thickness, indicating that the DBD-based plasma has the potential to become a highly cost-effective technology for the remediation of NAPL-contaminated soils. N2+, N2∗, NOx and O3 were identified as plasma-induced reactive species, a maximum gas temperature close to 300 °C was recorded, and the total carbon detected in exhaust gases, in the form of CO and CO2, was ca 40% of that contained in the NAPL removed from the soil. The main mechanisms of NAPL removal by plasma found to be the evaporation of organic compounds coupled with their oxidation in liquid and gas phase. Using ATR-FTIR in combination with high-throughput organic profiling analysis by GC–MS, ketones and alcohols were identified as the main intermediate products of alkanes oxidation in soil matrix.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Journal - Volume 270, 15 June 2015, Pages 428–436
نویسندگان
, , , ,