کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
14966 1365 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Machine Learnable Fold Space Representation based on Residue Cluster Classes
ترجمه فارسی عنوان
ماشین کشف فضای نمایشی بر اساس کلاس خوشه های باقی مانده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
چکیده انگلیسی


• We implemented a vectorial representation of residues contacts
• We implemented an efficient statistical test for machine-learnable data
• Our vectorial model reproduces protein packing
• A predictor is trained to effectively reproduce CATH and SCOP classifications
• Our predictor automatically identified inconsistent classification in CATH and SCOP

MotivationProtein fold space is a conceptual framework where all possible protein folds exist and ideas about protein structure, function and evolution may be analyzed. Classification of protein folds in this space is commonly achieved by using similarity indexes and/or machine learning approaches, each with different limitations.ResultsWe propose a method for constructing a compact vector space model of protein fold space by representing each protein structure by its residues local contacts. We developed an efficient method to statistically test for the separability of points in a space and showed that our protein fold space representation is learnable by any machine-learning algorithm.AvailabilityAn API is freely available at https://code.google.com/p/pyrcc/.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Biology and Chemistry - Volume 59, Part A, December 2015, Pages 1–7
نویسندگان
, , ,