کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1507489 1511049 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Simplified thermal model of the ITER magnet system
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
پیش نمایش صفحه اول مقاله
Simplified thermal model of the ITER magnet system
چکیده انگلیسی


• A fast calculation tool of overall dynamic thermal response of the ITER magnets has been developed.
• Different modeling options were evaluated in order to assess their impact on the model.
• A benchmark was performed using calculations done with the more detailed codes Vincenta and SuperMagnet.
• The tool gives very satisfactory results with much shorter execution times.

A simplified thermal model of the ITER magnet system has been developed to capture the essence of the magnet heat load dynamics without the need for extensive computations. Idealization of the magnets has been made using mainly two standard types of elements, solids and tubes. No Navier–Stokes equations have been solved for the hydraulics, but instead a simple transport model with approximation for pressure evolution has been used. The model was implemented in C language and used to investigate the important features needed to implement a computationally efficient and fast magnet thermal model capturing overall behavior in terms of superconductor cooling channel description (thermal coupling with jackets, presence of the conductor, importance of the central channel, etc.). Furthermore, the model was benchmarked against validated simulation tools such as SuperMagnet and Vincenta using the ITER Central Solenoid normal operation scenario for comparison. Dynamics were shown to be reproduced in good agreement with results attainable with these more detailed codes, considering the high level of uncertainty on the input parameters, namely the heat transfer coefficients and the values of heat loads.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Cryogenics - Volume 63, September–October 2014, Pages 241–254
نویسندگان
, ,