کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
15366 1407 2008 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimal classification for time-course gene expression data using functional data analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Optimal classification for time-course gene expression data using functional data analysis
چکیده انگلیسی

Classification problems have received considerable attention in biological and medical applications. In particular, classification methods combining to microarray technology play an important role in diagnosing and predicting disease, such as cancer, in medical research. Primary objective in classification is to build an optimal classifier based on the training sample in order to predict unknown class in the test sample. In this paper, we propose a unified approach for optimal gene classification with conjunction with functional principal component analysis (FPCA) in functional data analysis (FNDA) framework to classify time-course gene expression profiles based on information from the patterns. To derive an optimal classifier in FNDA, we also propose to find optimal number of bases in the smoothing step and functional principal components in FPCA using a cross-validation technique, and compare the performance of some popular classification techniques in the proposed setting. We illustrate the propose method with a simulation study and a real world data analysis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Biology and Chemistry - Volume 32, Issue 6, December 2008, Pages 426–432
نویسندگان
, , , ,