کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1544551 1512893 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterization, charge transport and magnetic properties of multi-walled carbon nanotube–polyvinyl chloride nanocomposites
ترجمه فارسی عنوان
خصوصیات، انتقال بار و خواص مغناطیسی نانولوله های کربنی چند جداره نانوکامپوزیت های پلی وینیل کلرید
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
چکیده انگلیسی


• Good quality MWCNT–PVC nanocomposites (0.1–44.4 wt%) are prepared and characterized.
• The ρ(T) of MWCNT–PVC nanocomposite of 1.9 wt% follow the 3D VRH model.
• The ρ(T) of higher (7.4 and above) wt% nanocomposites seem to follow power law.
• Exchange bias is observed due to interfacial interaction between Fe3C and core Fe nanoparticles.

Multi-walled carbon nanotube (MWCNT)–polyvinyl chloride (PVC) nanocomposites, with MWCNT loading up to 44.4 weight percent (wt%), were prepared by the solvent mixing and casting method. Electron microscopy indicates high degree of dispersion of MWCNT in PVC matrix, achieved by ultrasonication without using any surfactants. Thermogravimetric analysis showed a significant monotonic enhancement in the thermal stability of nanocomposites by increasing the wt% of MWCNT. Electrical conductivity of nanocomposites followed the classical percolation theory and the conductivity prominently improved from 10−7 to 9 S/cm as the MWCNT loading increased from 0.1 to 44.4 wt%. Low value of electrical percolation threshold ~0.2 wt% is achieved which is attributed to high aspect ratio and homogeneous dispersion of MWCNT in PVC. The analysis of the low temperature electrical resistivity data shows that sample of 1.9 wt% follows three dimensional variable range hopping model whereas higher wt% nanocomposite samples follow power law behavior. The magnetization versus applied field data for both bulk MWCNTs and nanocomposite of 44.4 wt% display ferromagnetic behavior with enhanced coercivities of 1.82 and 1.27 kOe at 10 K, respectively. The enhancement in coercivity is due to strong dipolar interaction and shape anisotropy of rod-shaped iron nanoparticles.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica E: Low-dimensional Systems and Nanostructures - Volume 56, February 2014, Pages 10–16
نویسندگان
, , , , , ,