کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
15464 | 1415 | 2006 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Predicting O-glycosylation sites in mammalian proteins by using SVMs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
O-glycosylation is one of the most important, frequent and complex post-translational modifications. This modification can activate and affect protein functions. Here, we present three support vector machines models based on physical properties, 0/1 system, and the system combining the above two features. The prediction accuracies of the three models have reached 0.82, 0.85 and 0.85, respectively. The accuracies of the three SVMs methods were evaluated by ‘leave-one-out’ cross validation. This approach provides a useful tool to help identify the O-glycosylation sites in mammalian proteins. An online prediction web server is available at http://www.biosino.org/Oglyc.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Biology and Chemistry - Volume 30, Issue 3, June 2006, Pages 203–208
Journal: Computational Biology and Chemistry - Volume 30, Issue 3, June 2006, Pages 203–208
نویسندگان
Sujun Li, Boshu Liu, Rong Zeng, Yudong Cai, Yixue Li,