کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1547817 997645 2006 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Origin of ferromagnetism and nano-scale phase separations in diluted magnetic semiconductors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
پیش نمایش صفحه اول مقاله
Origin of ferromagnetism and nano-scale phase separations in diluted magnetic semiconductors
چکیده انگلیسی

This paper reviews various origins of ferromagnetic response that has been detected in diluted magnetic semiconductors (DMS). Particular attention is paid to those ferromagnetic DMS in which no precipitation of other crystallographic phases has been observed. It is argued that these materials can be divided into three categories. The first consists of (Ga,Mn)As and related compounds. In these solid solutions the theory built on p–d Zener's model of hole-mediated ferromagnetism and the Kohn–Luttinger kp theory of semiconductors describes quantitatively thermodynamic, micromagnetic, optical, and transport properties. Moreover, the understanding of these materials has provided a basis for the development of novel methods enabling magnetisation manipulation and switching. To the second group belong compounds, in which a competition between long-range ferromagnetic and short-range antiferromagnetic interactions and/or the proximity of the localisation boundary lead to an electronic nano-scale phase separation that results in characteristics similar to colossal magnetoresistance oxides. Finally, in a number of compounds a chemical nano-scale phase separation into the regions with small and large concentrations of the magnetic constituent is present. It has recently been suggested that this spinodal decomposition can be controlled by the charge state of relevant magnetic impurities. This constitutes a new perspective method for 3D self-organised growth of coherent magnetic nanocrystals embedded by the semiconductor matrix.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica E: Low-dimensional Systems and Nanostructures - Volume 35, Issue 2, December 2006, Pages 293–299
نویسندگان
,