کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1552536 1513204 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Investigation of linear optical absorption coefficients in core-shell quantum dot (QD) luminescent solar concentrators (LSCs)
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
پیش نمایش صفحه اول مقاله
Investigation of linear optical absorption coefficients in core-shell quantum dot (QD) luminescent solar concentrators (LSCs)
چکیده انگلیسی


• The linear absorption coefficient of CdSe/ZnS and ZnS/CdSe were considered.
• The effect of shell layer radius on absorption coefficient of LSCs was considered.
• CdSe/ZnS Quantum Dots (QDs) absorb the photons with higher energy in solar spectrum.
• Effect of shell radius on absorption spectra redshift and blueshift was considered.
• The ZnS/CdSe QDs absorbs the photons with lower energy.

The interlevel absorption coefficient of CdSe/ZnS and ZnS/CdSe core-shell Quantum Dot (QD) in luminescent solar concentrators (LSCs) is reported. By considering the quantum confinement effects, the wave functions and eigenenergies of electrons in the nonperturebative system consists of a core-shell QD have been numerically calculated under the frame work of effective-mass approximation by solving a three-dimensional Schrӧdinger equation. And then the absorption coefficient is obtained under density matrix approximation considering in the polymer sheets of the concentrator including the core-shell QDs. The effect of the hetero-structure geometry upon the energy spectrum and absorption coefficient associated to interlevel transitions was also considered. The results show that the core-shell QDs can absorb the photons with higher energy in solar spectrum as compared to the inverted core-shell. And with a small shell layer diameter, the core-shell QDs produce larger linear absorption coefficients and consequently higher efficiency values, however it is inversed for inverted core-shell QDs. The work described here gives a detailed insight into the promise of QD-based LSCs and the optoelectronic devices applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Superlattices and Microstructures - Volume 97, September 2016, Pages 495–505
نویسندگان
, , ,