کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1552730 | 1513209 | 2016 | 12 صفحه PDF | دانلود رایگان |

• MOSFET with gate material and drain/source engineering is proposed.
• DGJ device exhibits enhancement over the reported data for IM device.
• New optimized approach using GA-based computation is suggested.
• Optimized DGJ device is suitable for analog/RF applications.
In this paper, we propose a new Double Gate Junctionless (DGJ) MOSFET design based on both gate material engineering and drain/source extensions. Analytical models for the long channel device associated to the drain current, analog and radio-frequency (RF) performance parameters are developed incorporating the impact of dual-material gate engineering and two highly doped extension regions on the analog/RF performance of DGJ MOSFET. The transistor performance figures-of-merit (FoM), governing the analog/RF behavior, have also been analyzed. The analog/RF performance is compared between the proposed design and a conventional DGJ MOSFET of similar dimensions, where the proposed device shows excellent ability in improving the analog/RF performance and provides higher drain current and improved figures-of-merit as compared to the conventional DGJ MOSFET. The obtained results have been validated against the data obtained from TCAD software for a wide range of design parameters. Moreover, the developed analytical models are used as mono-objective function to optimize the device analog/RF performance using Genetic Algorithms (GAs). In comparison with the reported numerical data for Inversion-Mode (IM) DG MOSFET, our optimized performance metrics for JL device exhibit enhancement over the reported data for IM device at the same channel length.
Journal: Superlattices and Microstructures - Volume 92, April 2016, Pages 80–91